О бесконечности пространства.
Если вас интересует дезодорирующая жидкость для туалетных кабин, то мы можем помочь вам. Для этого пройдите по ссылке и узнайте больше.
Давайте забудем ненадолго о бесконечных просторах вселенной и начнём с простой, вполне себе земной ситуации. Представьте, что ваша подруга Имельда, идя на поводу у своей страсти к обновлению гардероба, приобрела пятьсот роскошных платьев и тысячу пар обуви от-кутюр. Если каждый день она будет надевать одно платье и одну пару обуви, то в какой-то момент все возможные комбинации будут исчерпаны, и ей придётся повторить наряд. Легко оценить, когда это произойдёт. Из пяти сотен платьев и одной тысячи пар обуви можно составить 500 000 различных комбинаций. Пятьсот тысяч дней — это примерно 1400 лет, и, поэтому, если Имельда проживёт достаточно долго, то её можно будет увидеть в том наряде, который она когда-то уже надевала. Если Имельда, дай бог ей крепкого здоровья, снова и снова будет перебирать наряды, то она обязательно наденет каждый из них бесконечное число раз. Бесконечное число появлений Имельды в конечном числе нарядов приводит к бесконечным повторениям.
Развивая эту же тему, представим что Рэнди, опытный крупье, последовательно перетасовал невообразимое количество карточных колод и аккуратно разложил стопками, одну за другой. Отличается ли порядок карт в каждой перетасованной колоде или же они должны повторяться? Ответ зависит от количества колод. Пятьдесят две карты в колоде могут быть расположены 80 658 175 170 943 878 571 660 636 856 403 766 975 289 505 440 883 277 284 000 000 000 000 различными способами (52 способа расположения первой карты умножить на 51 способ расположения второй карты, умножить на 50 способов расположения следующей карты, и так далее). Если количество колод, которые перетасовывает Рэнди, превышает число возможных раскладов карт внутри колоды, то тогда расклады в части колод совпадут. Если бы Рэнди перетасовывал бесконечное количество карт, то одинаковые расклады карт внутри колод обязательно бы повторялись бесконечное число раз. Так же как с Имельдой и её нарядами, бесконечное число событий при конечном числе возможных сочетаний приводит к тому, что различные расклады бесконечно повторяются.
Это базовое понятие очень важно для космологии бесконечной вселенной. Следующие два ключевых шага демонстрируют, почему это так.
Большая часть бесконечной вселенной находится за пределами видимого, даже если использовать самые мощные телескопы. Несмотря на то, что свет распространяется невероятно быстро, если объект достаточно удалён, то испущенный им свет — даже если это произошло сразу после Большого взрыва — просто не успеет долететь до нас. Так как возраст нашей Вселенной примерно 13,7 миллиарда лет, то можно подумать, что в эту категорию попадает всё, что находится далее чем 13,7 миллиардов световых лет. Такой интуитивный вывод в целом правильный, но надо учитывать, что расширение пространства увеличивает расстояние между объектами, один из которых испустил свет давным-давно, а другой только что этот свет поглотил; поэтому максимальное расстояние, на которое мы можем заглянуть, на самом деле больше — примерно 41 миллиард световых лет. Точная цифра не имеет особого значения. Важно то, что области вселенной, находящиеся на определённом расстоянии от нас, недоступны нашим наблюдениям. Подобно кораблям, ушедшим за горизонт и потому невидимым с берега, объекты в пространстве, слишком удалённые, чтобы быть доступными для наблюдения, находятся, как говорят астрономы, за пределами нашего космического горизонта .
Точно так же свет, испущенный нами, ещё не достиг тех удалённых областей космоса, поэтому и мы находимся за пределами их космического горизонта. Причём космический горизонт — это единственное, что очерчивает доступное и недоступное нашему взору. Из специальной теории относительности Эйнштейна мы знаем, что никакой сигнал, возмущение или информация, вообще ничего не может распространяться быстрее света. Это означает, что области вселенной, расположенные настолько далеко друг от друга, что свет не успел дойти от одной области к другой, никак не взаимодействовали и развивались совершенно независимо друг от друга.
Воспользовавшись двумерной аналогией, мы можем сравнить пространство в некий момент времени с гигантским лоскутным одеялом (с круглыми лоскутками), каждый лоскут которого представляет отдельный космический горизонт. Некто, расположенный в центре лоскута, мог провзаимодействовать со всем, что находится внутри этого лоскутка, но с соседними лоскутками не было никакого контакта, потому что они находятся слишком далеко. Точки вблизи границы двух лоскутков расположены ближе друг к другу, нежели соответствующие центры, и поэтому могли бы провзаимодействовать. Но если рассмотреть, например, лоскутки, расположенные через строку и через столбец в космическом одеяле, то ясно, что все точки, расположенные в разных лоскутках настолько далеки друг от друга, что никакое перекрёстное взаимодействие не имеет места. Та же самая идея работает и в трёх измерениях, когда космические горизонты — лоскутки на космическом одеяле — имеют сферическую форму. Причём справедлив тот же вывод: достаточно отдалённые лоскутки находятся за пределами сферы влияния каждого и, поэтому, это независимые миры.
Если пространство огромно, но имеет конечный размер, его можно разделить на большое, но всё же конечное число независимых лоскутков. Если же пространство бесконечно, то и число независимых лоскутков тоже бесконечно. Именно вторая возможность представляется наиболее захватывающей, и сейчас мы увидим, почему так происходит. В любом таком лоскутке частицы вещества (более точно, вещества и энергии всех видов) могут быть собраны лишь в конечное число различных конфигураций. Те же самые рассуждения, которые мы отрепетировали на Имельде и Рэнди, приводят нас к выводу, что условия существования в бесконечном разнообразии лоскутков — в областях вселенной, наподобие той, в которой мы живём, но распределённых в безграничном космосе — обязательно должны повторяться.
|